Robert Howard (1923–2014): Dot matrix printer & direct imaging press

Posted in Color Printing, Digital Printing, People in Media History, Prepress, Print Media with tags , , , , , , , , , , , , , , , , , , , on October 31, 2016 by multimediaman
Robert Howard: May 19, 1923–December 19, 2014

Robert Howard:
May 19, 1923–December 19, 2014

Apple recently removed the headphone jack from the iPhone 7. Owners of the new model are required to use wireless Bluetooth audio or the Lightning port—the only connector on the phone that also charges the battery—for wired headphones. If the headphone jack is a must, owners can purchase the Lighting-to-3.5mm audio adapter separately for $9.

The missing headphone jack has upset some Apple customers. At the iPhone 7 launch, marketing chief Phil Schiller drove home the company’s reasoning, “Maintaining an ancient, single-purpose, analog, big connector doesn’t make sense because that space is at a premium.” As some tech journalists have pointed out, Apple’s decision comes down to one word: progress.

Analog 3.5mm and ¼” audio connectors

Analog 3.5mm and ¼” audio connectors

Actually, the 3.5mm headphone jack is based on technology that is more than one hundred twenty-five years old. It is a miniaturized version of the phone connector originally developed in the late 1870s for operators to manually connect telephone calls by plugging cords into a switchboard.

The 3.5mm format was created in the 1950s for the transistor radio earpiece and was modified in the 1960s for the Sony portable FM radio and again in 1979 for the Sony Walkman. The fact is that the analog headphone jack has been an anachronism since compact disks and other digital technologies like optical audio became available more than thirty years ago.

As with many earlier decisions by Apple—like eliminating floppy disk and CD-DVD drives, replacing parallel ports with USB ports and adopting Wi-Fi and Bluetooth wireless—the abandonment of the headphone jack, although disruptive, will allow the next generation of technology to develop and flourish.

Centronics interface

The Centronics connectors (25-pin and 36-pin) were dominant in computer peripheral technology for nearly thirty years beginning in 1970

The Centronics connectors (25-pin and 36-pin) were dominant in computer peripheral technology for nearly thirty years beginning in 1970

Interfaces and standards for connecting things together is an important part of electronics and computer history. The adoption of a new format, design or methodology over earlier ones—like USB for SCSI or Thunderbolt for FireWire—is complex and involves a mix of science, engineering, economics and a bit of good luck. In some cases, innovation can fill a void and be embraced rapidly if the cost of adoption is affordable. In other instances, persistent obsolescence can override innovation due to design weaknesses or ease-of-use considerations.

dr-an-wang

Dr. An Wang of Wang Laboratories

Robert Howard—a prolific inventor for seven decades beginning in the 1940s—was among the first engineers to understand that open technology standards were needed to connect computer equipment together. In the late 1960s, along with Dr. An Wang and Prentice Robinson at Wang Laboratories, Howard developed the 36-pin Centronics parallel interface to connect the Centronics Model 101 dot matrix printer to computers.

Although the Wang Labs team could not have predicted it, the Centronics connector took off and became one of the most successful computer connection technologies ever made. One reason for its success was the performance advantages over previous serial interfaces: parallel could carry multiple data streams between devices and could also simultaneously transmit status information.

More fundamentally, however, was the fact that the computer industry in the 1960s was going through a transition. Prior to the Centronics interface, each computer manufacturer used proprietary solutions designed to block customers from buying equipment from competitors. As the computer peripheral business expanded rapidly, however, the lack of standardized connection methods had become a barrier to progress.

As described by Robert Howard in his autobiography Connecting the Dots, the Centronics parallel port was the beginning of a shift in business philosophy among computer companies: “We came to the conclusion that if we developed a very easy, simple interface and gave it free to the world, it might be accepted and used by everyone. Apparently, the practice of creating unique interfaces was so resented by everyone in the computer industry that once IBM accepted our interface, seven other major companies immediately followed suit.” This was not the first or last major technical accomplishment associated with Robert Howard.

Robert Howard’s youth

robert-with-his-father-samuel-horowitz-howard-in-1931

Young Robert with his father Samuel Horowitz (Howard) in 1931

Robert Howard was born Robert Emanuel Horowitz in the Brownsville section of Brooklyn, New York to Samuel and Gertrude (Greenspoon) Horowitz on May 19, 1923. Robert’s father worked the midnight shift at the Main US Post Office in New York City. Although he was born three months premature and was afflicted with dyslexia, Robert grew into a very likeable and stout youngster with athletic talent in several sports.

After the family moved to Flatbush, Brooklyn, Robert spent much of his spare time at the Brooklyn Ice Palace where he learned to skate. He played youth hockey and his skills on the ice were noticed by the hockey coach at Brooklyn Technical High School, an elite all-boys public school. Despite his marginal grades, Robert was recruited to attend Brooklyn Tech as along as that he promised to improve his studies.

While at Brooklyn Tech, Robert excelled at machine shop and woodworking. He built a model airplane out of balsa wood and tissue paper and a refurbished gas engine as a school project. His 1937 delta-wing design was ahead of its time and he received an award for it.

Robert was very close to his maternal grandfather, Isaac Greenspoon, who immigrated to the US from Odessa, Russia in 1910. Isaac started a window-shade business on Manhattan’s Lower East Side that became very successful. Robert worked at his grandfather’s company as a teenager and acquired business skills and decision making that would later prove to be a critical part of his own success.

Although no one, including family members, expected Robert to graduate, he not only received his high school diploma but was awarded an athletic scholarship to attend the college of engineering at Columbia University. By the time of his graduation from Brooklyn Tech, World War II was well underway and the Horowitz’s changed their name to “Howard” to avoid the anti-Semitism that was on the rise during that period.

Before attending Columbia, Robert took a summer job working the night shift for the Sperry Gyroscope Company in Brooklyn. He was hired to operate the milling and cutting machines used to produce parts for US military searchlights. He kept the job when college classes started so he could cover his living expenses.

In a stroke of good fortune, Robert was hired as an engineer for a new vacuum tube project at Sperry. Although he was still a student and did not have an engineering degree, the new position required the machine-shop skills that he did have. Robert switched to night school and threw himself into the vacuum tube development program. This was his first experience with electronics and, like so many other innovators of his generation, the field soon became a focus of his work and he stick with it until the end of his career.

Howard’s early inventions

Robert Howard’s sons Larry and Richard with a Howard Television set in 1959

Robert Howard’s sons Larry and Richard with a Howard Television set in 1959

After a brief stint in the army, Robert was hired as an engineer at Sylvania Electric Company in Queens, New York. Starting at the age of twenty, he became involved in a seemingly endless series of projects in a wide variety of pursuits that would establish him as a pioneer of post-war electronics innovation. His accomplishments would include the founding of at least twenty-four different companies and the development of dozens of state-of-the-art inventions.

Robert Howard’s inventions are so numerous and varied that it is only possible to review a few of them here:

  • 1947: Rectangular TV tube
    All early television sets had round picture tubes. This meant that the rectangular broadcast image was either clipped the top and bottom or was reduced in size to fit in the 7, 10, 11 or 14-inch standard diameters of the first TV tubes. While working for Sylvania, Robert Howard proposed a rectangular tube design and convinced the company to manufacture one hundred of these 16-inch television CRTs.
  • 1950: Cable television
    After founding Howard Television, Inc. to build and sell his own design for black and white TVs, Robert secured a contract to create the first cable TV system that was designed as part of the newly constructed Windsor Park apartment complex in the Bayside section of Queens, New York. Later known as the master antenna television system (MATS), the project connected 18 buildings with a total 320 apartments via coaxial cable to a single television antenna with a signal booster and splitter that enhanced the reception for seven TV channels from the New York area.
  • 1961: Improvements in vinyl record production
    Right around the time that the recording industry was transitioning from 78s to LPs, Robert was collaborating with a company that made the machines that pressed vinyl records. He helped to improve the quality of the mass-produced records by introducing zinc plates into the process. He also invented a pressurized steam-based system for controlling the temperature of the molten vinyl as it was extruded into the record press. Known as the “The Boomer,” Robert Howard’s invention significantly increased the volume of phonograph record production while maintaining the highest stereo quality.
  • 1968: Casino computer system
    As a division of Wang Laboratories, Robert Howard founded Centronics to build the first computerized system to prevent skimming at casino gaming tables. Robert’s system tracked the relationship between the amount of cash coming in versus the value of chips going out. The computerized register centrally tracked the amount of each transaction, each table number and each dealer at any time during the day.

Contributions to printing

Robert Howard’s work with the casino industry led to plans for a printing device that could produce multiple hard copy records of gaming transactions. The available technologies of that time were either too expensive and large or too small and slow for this purpose. Working with Dr. Wang at Centronics on a new computer printing device, Robert’s curiosity and sense of entrepreneurship put him on a path toward innovations that helped bring the printing industry into the digital age.

Model 101 Centronics Dot Matrix Printer

Model 101 Centronics Dot Matrix Printer

  • 1970: Dot matrix printer
    Electronic impact printers with ink-soaked cloth ribbons like typewriters had been developed by IBM in the 1950s for printing from mainframe computers. These machines used a chain with a complete set of characters passing horizontally across the paper at high speed. As the paper moved vertically line-by-line, type hammers struck from behind and drove the accordion folded, tractor-fed paper against the ribbon and type characters on the chain. The IBM line printers had the speed that Robert needed but they cost about $25,000 and were the size of a large piece of office furniture.

    While at Wang Labs, Robert developed a self-contained impact print-head could be made to produce type characters on paper from a matrix of one hundred dots. His invention used wires or “pins” that could print up to 185 characters per second and hit the ribbon and paper hard enough to print all four copies of a multi-part form. The core technology of his invention was an electromagnetic switch that could make each pin strike the printing surface one thousand times per second, more than enough to satisfy the performance required for the gaming reports, and at a cost that was affordable.

    Following the formation of an independent partnership with the Japan-based Brother Industries, Robert Howard’s dot matrix technology was deployed in the Model 101 Centronics printer. Although there were competing dot matrix devices on the market, Centronics became the most successful mass production printer of the early computer industry. By the mid-1970s, sales grew exponentially and reached tens of thousands of units internationally. It was the popularity of the printer that made the above-mentioned Centronics interface into an industry standard for connecting peripherals to computers that lasted for decades until it was replaced by the Universal Serial Bus (USB) in the 1990s.

  • 1991: Direct imaging press

    Prototype of the Heidelberg Quickmaster DI press that was designed with integrated Presstek direct imaging technology

    Prototype of the Heidelberg Quickmaster DI press that was designed with integrated Presstek direct imaging technology

    Robert Howard made what is certainly his most enduring contribution to the printing industry toward the end of his career. In 1986, he founded Presstek to develop the first ever direct imaging offset printing technology. As he explained in his autobiography, “The problem at that time was that offset color was a slow, costly process. It took at least ten days to two weeks of what was called ‘prepress’ preparation before a color print job could even be put on a printing press, and because of this expense, it was both impractical and costly to print less than 10,000 copies of anything. I wanted to apply our knowledge of computers and imaging to the color printing business.”

    Robert’s breakthrough concept was to image the printing plates on the press itself and eliminate the darkrooms, film and chemistry associated with prepress processes. By 1991, a Presstek laser imaging system was added to a Heidelberg offset printing press and sold as the Heidelberg GTO DI (for direct imaging). At the center of the Presstek system was a set of four-color thermal laser heads that imaged plates on press. Aside from the novelty of the on-press plate imaging, the Presstek technology was waterless and was easily retrofitted onto the existing Heidelberg GTO design because it took the place of the unneeded dampening system.

    Beginning in 1993, Presstek and Heidelberg developed the Quickmaster DI press, a printing system that was designed from scratch with the on-press laser imaging technology. Launched at DRUPA in 1995, the Quickmaster DI became one of the most popular Heidelberg offset presses ever with 5,000 machines sold within the decade. The press included design innovations that made it easier to operate than previous offset systems. With this innovation, Robert Howard invented a technology that was both disruptive to the prepress industry and also enabled former prepress companies to enter the short-run color printing market.

Robert Howard died on December 19, 2014 at the age of 91. Although he is not a well-known figure in the history of printing—perhaps because of the variety of businesses and disciplines where he left his mark—Robert made critical contributions to the industry, especially in the final decades of the twentieth century. His exceptional talents as an engineer and entrepreneur were essential to the transition of offset printing from an exclusively analog process to one that uses a host of integrated digital technologies.

How the index card launched the information age

Posted in Digital Media, People in Media History, Print Media with tags , , , , , , , , , , , , , , , , , , , , on September 30, 2016 by multimediaman

library-card-catalogOne year ago this month, the final order of library catalog cards was printed by the Online Computer Library Center (OCLC) in Dublin, Ohio. On October 2, 2015, The Columbus Dispatch wrote, “Shortly before 3 p.m. Thursday, an era ended. About a dozen people gathered in a basement workroom to watch as a machine printed the final sheets of library catalog cards to be made …”

The fate of the printed library card, an indispensable indexing tool for more than a century, was inevitable in the age of electronic information and the Internet. It is safe to say that nearly all print with purely informational content—as opposed to items fulfilling a promotional or a packaging function—is surely to be replaced by online alternatives.

Founded in 1967, the OCLC is a global cooperative with 16,000 member libraries. Although it no longer prints library cards, the OCLC continues to fulfill its mission by providing shared lirary resources such as catalog metadata and WorldCat.org, an international online database of library collections.

Speaking about the end of the card catalog era, Skip Prichard the CEO of the OCLC said, “The vast majority of libraries discontinued their use of the printed library catalog card many years ago. … But it is worth noting that these cards served libraries and their patrons well for generations, and they provided an important step in the continuing evolution of libraries and information science.”

The 3 x 5 card

Printed library catalog card

Printed library catalog card

The library catalog card is one form of the popular 3 x 5 index card that served as a filing system for a multitude of purposes for over two hundred years. While many of us have been around long enough to have used or maybe even still use them—for addresses and phone numbers, recipes, flash cards or research paper outlines—we may not be aware of the relationship that index cards have to modern information science.

The original purpose of the index card and its subsequent development represented the early stages of information theory and practice. Additionally, as becomes clear below, without the index card as the first functional system for organizing complex categories, subcategories and cross-references, studies in the natural sciences would have never gotten off the ground.

The index card became the indispensable tool for both organizing and comprehending the expansion of human knowledge at every level. Along with several important intermediary steps, the ideas that began with index cards eventually led to relational databases, document management systems, hyperlinks and the World Wide Web.

Carl Linnaeus and natural science

carl-linnaeus

Carl Linnaeus

The Swedish naturalist and physician Carl Linnaeus (1707–1778) is recognized as the creator of the index card. Linnaeus used the cards to develop his system of organizing and naming the species of all living things. Linnaean taxonomy is based on a hierarchy (kingdom, phylum, class, order, family, genus, species) and binomial species naming (homo erectus, tyrannosaurus rex, etc.). He published the first edition of his universal conventions in a small pamphlet called “The System of Nature” in 1735.

Beginning in his early twenties, Linnaeus was interested in producing a series of books on all known species of plants and animals. At that time, there were so many new species being discovered that Linnaeus knew as soon as a book was printed, a large amount of new information would already be available. He wanted to quickly and accurately revise his publications to take into account the new findings in subsequent editions.

As time went on, Linnaeus developed different functional methods of sorting through and organizing enormous amounts of information connected with his growing collection of plant, animal and shell specimens (eventually it rose to 40,000 samples). His biggest problem was creating a process that was both structured enough to facilitate retrieval of previously collected information and flexible enough to allow rearrangement and addition of new information.

Pages from an early edition of Linnaeus’ “The System of Nature”

Pages from an early edition of Linnaeus’ “The System of Nature”

Working with paper notations in the eighteenth century, he needed a system that would allow the flow of names, references, descriptions and drawings into and out of a fixed sequence for the purposes of comparison and rearrangement. This “packing” and “unpacking” of information was a continuous process that enabled Linnaeus’ research to keep up with the changes in what was known about living species.

Linear vs non-linear methods

At first, Linnaeus used notebooks. This linear method—despite his best efforts to leave pages open for updates and new information—proved to be unworkable and wasteful. As estimates of how much room to allow often proved incorrect, Linnaeus was forced to squeeze new details into ever shrinking available space or he ended up with unutilized blank pages.

After thirty years of working with notebooks, Linnaeus began to experiment with a filing system of information recorded on separate sheets of paper. This was later converted to small sheets of thick paper that could be quickly handled, shuffled through and laid out on a table in two-dimensions like a deck of playing cards. This is how the index card was born.

a-stack-of-linnaeus-index-cards

A stack of Linnaeus’ hand written index cards

Linnaeus’ index card system was able to represent the variation of living organisms by showing multiple affinities in a map-like fashion. In order to accommodate the ever-expanding knowledge of new species—today the database of taxonomy contains 8.7 million items—Linnaeus created a breakthrough method for managing complex information.

Melvil Dewey and DDC

While index cards continued to be used in Europe, an important step forward in information management was made in the US by Melvil Dewey (1851-1931), the creator of the well-known Dewey Decimal System (or Dewey Decimal Classification, DDC). Used by libraries for the cataloging of books since 1876, the DDC was based on index cards and introduced the concepts of “relative location” and “relative index” to bibliography. It also enabled libraries to add books to their collection based on subject categories and an infinite number of decimal expressions known as “call numbers.”

The young Melvil Dewey

The young Melvil Dewey

Previous to the DDC, libraries attempted to assign books to a permanent physical location based on their order of acquisition. This linear approach proved unworkable, especially as library collections grew rapidly in the latter part of the nineteenth century. With industrialization, libraries were overflowing with paper: letters, reports, memos, pamphlets, operation manuals, schedules as well as books were flooding in and the methods of cataloging and storing these collections needed to find a means of keep up.

In the 1870s, while working at Amherst College Library, Melvil Dewey became involved with libraries across the country. He was a founding member of the American Library Association and became editor of the The Library Journal, a trade publication that still exists today. In 1878, Dewey published the first edition of “A Classification and Subject Index for Cataloguing and Arranging the Books and Pamphlets of a Library” that elaborated on the use of the library card catalog index.

Precursor to the information age

Title page of the first edition of Dewey’s bibliographic classification system

Title page of the first edition of Dewey’s bibliographic classification system

Like many others of his generation, Melvil Dewey was committed to scientific management, standardization and the democratic ideal. By the end of the nineteenth century the Dewey classification system and his 3 x 5 card catalog were being used in nearly every school and public library in the US. The basic concept was that any member of society could walk into a library anywhere in the country, go to the card catalog and be able to locate the information they were looking for.

In 1876 Dewey created a company called Library Bureau and began providing card catalog supplies, cabinets and equipment to libraries across the country. Following the enormous success of this business, Dewey expanded the Library Bureau’s information management services to government agencies and large corporations at the turn of the twentieth century.

In 1896, Dewey formed a partnership with Herman Hollerith and the Tabulating Machine Company (TMC) to provide the punch cards used for the electro-mechanical counting system of the US government census operations. Dewey’s relationship with Hollerith is significant as TMC would be renamed International Business Machines (IBM) in 1924 and become an important force in the information age and creator of the first relational database.

Paul Otlet and multidimensional indexing

Paul Otlet working in his office in the 1930s

Paul Otlet working in his office in the 1930s

While Dewey’s classification system became the standard in US libraries, others were working on bibliographic cataloging ideas, especially in Europe. In 1895, the Belgians Paul Otlet (1868-1944) and Henri La Fontaine founded the International Institute of Bibliography (IIB) and began working on something they called the Universal Bibliographic Repertory (UBR), an enormous catalog based on index cards. Funded by the Belgian government, the UBR involved the collection of books, articles, photographs and other documents in order to create a one-of-a-kind international index.

As described by Otlet, the ambition of the UBR was to build “an inventory of all that has been written at all times, in all languages, and on all subjects.” Although they used the DDC as a starting point, Otlet and La Fontaine found limitations in Dewey’s classification system while working on the UBR. Some of the issues were related to Dewey’s American perspective; the DDC lacked some categories needed for information related to other regions of the world.

A section of the Universal Bibliographic Repertory

A section of the Universal Bibliographic Repertory

More fundamentally, however, Otlet and La Fontaine made an important conceptual breakthrough over Dewey’s approach. In particular, they conceived of a complex multidimensional indexing system that would allow for more deeply defined subject categories and cross-referencing of related topics.

Their critique was based on Otlet’s pioneering idea that the content of bibliographic collections needed to be separated from their form and that a “universal” classification system needed to be created that included new media and information sources (magazines, photographs, scientific papers, audio recordings, etc.) and moved away from the exclusive focus on the location of books on library shelves.

Analog information links and search

After Otlet and La Fontaine received permission from Dewey to modify the DDC, they set about creating the Universal Decimal Classification (UDC). The UDC extended Dewey’s cataloging expressions to include symbols (equal sign, plus sign, colon, quotation marks and parenthesis) for the purpose of establishing “links” between multiple topics. This was a very significant breakthrough that reflected the enormous growth of information taking place at the end of the nineteenth century.

By 1900, the UBR had more than 3 million entries on index cards and was supported by more than 300 IIB members from dozens of countries. The project was so successful that Otlet began working on a plan to copy the UBR and distribute it to major cities around the world. However, with no effective method for reproducing the index cards, other than typing them out by hand, this project ran up against the technical limitations of the time.

henri-la-fontaine-with-staff-members-of-the-mundaneum

Henri La Fontaine and staff members at the Mundaneum in Mons, Belgium. At its peak in 1924, the catalog contained 18 million index cards.

In 1910, Otlet and La Fontaine shifted their attention to the establishment of the Mundaneum in Mons, Belgium. Again with government support, the aim of this institution was to bring together all of the world’s knowledge in a single UDC index. They created the gigantic repository as a service where anyone in the world could submit an inquiry on any topic for a fee. This analog search service would provide information back to the requester in the form of index cards copied from the Mundaneum’s bibliographic catalog.

By 1924, the Mundaneum contained 18 million index cards housed in 15,000 catalog drawers. Plagued by financial difficulties and a reduction of support from the Belgian government during the Depression and lead up to World War II, Paul Otlet realized that further management of the card catalog had become impractical. He began to consider more advanced technologies—such as photomechanical recording systems and even ideas for electronic information sharing—to fulfill his vision.

Although the Mundaneum was sacked by the Nazi’s in 1940 and most of the index cards destroyed, the ideas of Paul Otlet anticipated the technologies of the information age that were put into practice after the war. The pioneering work of others—such as Emanuel Goldberg, Vannevar Bush, Douglas Englebart and Ted Nelson—would lead to the creation of the Internet, World Wide Web and search engines in the second half of the twentieth century.

George Baxter (1804–1867): Pictorial color printing

Posted in Color Printing, People in Media History, Print Media with tags , , , , , , , , , , , on July 31, 2016 by multimediaman
George Baxter: July 31, 1804–January 11, 1867

George Baxter: Jul 31, 1804–Jan 11, 1867

Prior to the invention of photography and photomechanical halftones, the printing of pictures required the handwork of skilled artists. For centuries, craftsmen used various manual techniques—engraving, etching, stippling and drawing—to create original images on wood blocks, metal plates or lithographic stones that could be inked and printed onto paper.

At each evolutionary stage—from relief to intaglio to lithography—pictorial printing became incrementally more productive. However, the craftsmen’s work persisted and the process remained slow. Well into the 1800s, it was common for creative work on pictures such as engraved images on text pages or separately printed lithographic plates to begin a year or two before the date of publication.

Although the artistic work was time-consuming, it often produced striking results. By the time color printing methods were perfected, magnificent pictures began to appear. In the mid-nineteenth century, pictorial color printers—some using RBY or RBYK models and others using “tinting” techniques of up to 20 or even 30 different colors—were producing astonishingly beautiful prints.

As the methods advanced and cost per picture declined, the quantity of color printing grew. This expansion was in part due to the industrialization of printing press machinery. The speed and volume of print was being driven up exponentially by metal cylinders, steam power and rotary printing equipment.

The Coronation of Queen Victoria and the Opening of Parliament (1842)

“Her Most Gracious Majesty Receiving the Sacrament at her Coronation” (1841) is among George Baxter’s most famous pictorial work. It includes two hundred identifiable portraits of individuals who were present at the event.

Another side of the surge in color was that more people than ever before had access to the new low-priced prints. For the first time, average people could buy printed copies of paintings and other items previously seen only in the private collections of society’s elite. The color printer became for the people the disseminator of artistic masterpieces and the chronicler of contemporary events.

A few enterprising printers recognized that industrial society had created an opportunity to produce and sell pictures to the general public. They established companies in cities and employed the available labor—including child workers—to print inexpensive color pictures for the growing urban population. In this environment, the Englishman George Baxter emerged as perhaps the most important figure of the era of pictorial color printing.

George Baxter’s innovation

In some respects, the color work of George Baxter should be considered Victorian-age fine art. Even though he produced upwards of 20 million prints during his lifetime, Baxter’s work exhibits virtuosity in the technical aspects of platemaking and printing as well as extraordinary gifts as an engraver.

It would take many decades after his death for the meaning of Baxter’s accomplishments to be fully appreciated. As C.T. Courtney Lewis explained in George Baxter, Color Printer, His Life and Work in 1908, “His genius was not unrecognized in his own day; yet it seems that it is only now that the hour of his complete triumph has sounded … he was not a printer merely: he was an artist, a pioneer, and a man of many and versatile talents.”

The innovation for which George Baxter is known—and for which he applied for on October 23, 1835 and was granted a patent on April 23, 1836—is a complex one. To produce long press runs of beautiful and economically viability color pictures, Baxter combined two previously existing printing techniques:

  1. Steel or copper plate intaglio printing
  2. Woodblock relief printing

Baxter’s novelty was that the first impression was printed in black or gray ink with an intaglio outline or “key plate” and then subsequent multiple layers of color tinting were printed with relief woodblocks. His convergence of intaglio and relief printing produced pictures that were significantly superior to anything printed with either process independently of one another.

An early example of Baxter’s color printing innovation, “Evening on the sea” (1835), is the frontispiece of Robert Mudie’s book “The Sea”

An early example of Baxter’s color printing innovation, “Evening on the sea” (1835), is the frontispiece of Robert Mudie’s book “The Sea”

As Baxter himself explained in his patent application, “My invention consists in colouring such impressions of steel and copper plate engravings and lithographic and zincographic printing by means of block printing in place of colouring such impressions by hand as heretofore practised, and which is an expensive process; and by such a process producing coloured impressions of a high degree of perfection and far superior in appearance to those which are coloured by hand and such prints as are obtained by means of block printing in various colours uncombined with copper and steel lithographic or zincographic impressions.”

Prior to Baxter, key plates had been used in the more labor-intensive process of color tinting by hand. In the case of the woodblock method (also known as chromoxylography), it was used previously by others without the preliminary step of the key plate. It is also true that a combination of the two methods had been performed a century earlier by the Englishman Elisha Kirkall, but with nothing approaching the level of Baxter’s perfection or economy.

A decisive aspect of what became known as Baxter’s Process was the remarkably consistent quality of the entire color printing run. This was achieved with tight registration—using four pins or “pointers” in the press to hold the paper in position from one impression to the next—and oil-based inks. The advent of improved brightness of pigments and the permanent quality of the oil-based inks gave Baxter’s prints a superior color fidelity.

Among the first examples of Baxter’s method was the frontispiece of Robert Mudie’s 1835 book The Sea. What may seem today as a subtle change, the picture of a boat at sea during sunset carries a degree of precision and detail that was not achievable prior to Baxter’s two-step process.

Early life

George Baxter was born on July 31, 1804 at Lewes in the southeastern English county of Sussex. This area is known to have been a center of the early English printing and papermaking industries.

George was the second son of John Baxter, the proprietor of a typography, printing and publishing establishment in Lewes. George’s father would gain in his lifetime a reputation as an advanced printer who was the first to test and perfect several early industrial innovations in printing press technology.

George attended Cliffe House Academy and went to high school at St. Ann’s in Lewes. After he finished school, he worked in a book shop in Brighton, a seaside town less than ten miles from home. Later, although the record is unclear, he apprenticed as a wood engraver and lithographer.

By the age of nineteen, George was focusing on the artistic elements of printing rather than the mechanical and he began making a name for himself as a gifted illustrator. By 1826, it is known that George Baxter was in Lewes at his father’s establishment identifying himself as a “wood-engraver.”

At age 23, George migrated to London and set up his own business as an engraver and printer. Six months after starting his enterprise in London, George married Mary Harrild, daughter of Robert Harrild, a printing industry innovator and business partner of John Baxter. The record shows that at this time George Baxter began his experiments with color printing.

Greatest works

Once he had demonstrated to himself—if not also to everyone in the printing business—that his patented process represented an important breakthrough, Baxter started on a path that would continue for the next thirty years. During the period of his first patent grant (1834-1849), Baxter had no competitors in England for the process that he advertised as “Pictorial Colour Printing for Book Illustration and Picture Printing.”

“The Pictorial Album, or Cabinet of Paintings for the Year 1837” included eleven color prints by George Baxter. Some consider this to be among his finest work.

“The Pictorial Album, or Cabinet of Paintings for the Year 1837” included eleven color prints by George Baxter. Some consider this to be among his finest work.

At the end of 1836, Baxter produced a volume called The Pictorial Album, or Cabinet of Paintings that was published by Chapman and Hall. This project—which contained ten pictures including reproductions of several works of well-known artists of the day along with a frontispiece—was the first major publication of Baxter’s process. Some have said it was the high-water mark of his craft.

In 1841, Baxter printed two pictures called “Her Most Gracious Majesty Receiving the Sacrament at Her Coronation” and “The Arrival Her Most Gracious Majesty Queen Victoria at the House of Lords to Open her First Parliament” that include 200 portraits of identifiable guests at the event at Westminster Abbey in 1938. These oil-color prints—which are 21-3/4” by 17-1/2”—were prepared in cooperation with Buckingham Palace and gained Baxter direct access to the Queen and other royals in Britain and elsewhere in Europe.

Confident of the superiority of his methods, George Baxter was not shy about self-promotion as he gained a level of notoriety for his invention. However, as Baxter was continually preoccupied with the artistic and technical aspects of his business, he was never successful financially. In 1849, he petitioned the Privy Council and was granted a five-year extension on his patent on the grounds that he had lost money during the previous fourteen years.

Baxter’s print booth at the Great Exhibition

Baxter’s print booth at the Great Exhibition

In 1851, Baxter prints were on display at The Great Exhibition (also called the Crystal Palace Exhibition) in London. Of his work, the official catalog of the expo said, “Mr. George Baxter, the patentee of the process of printing in oil colours, exhibits in the Fine Art Court, upwards of sixty specimens (from the largest size to the smallest miniature), of his choicest productions … The visitors will indeed be delighted with these charming specimens which form the principal attraction in the Fine Art Court.”

Baxter also exhibited prints at the international expos in New York City in 1852 and Paris in 1855. He was awarded medals for these entries. Later, Baxter produced a series of prints called “Gems of The Great Exhibition” which show the grandeur of his vision and the dexterity of his engraving skills.

Baxter’s series “Gems of the Great Exhibition” (1852) included this image of the exterior of the Crystal Palace in London.

Baxter’s series “Gems of the Great Exhibition” (1852) included this image of the exterior of the Crystal Palace in London.

Legacy

In later years, while still holding his patent, Baxter took to licensing his method to other printers as a means of generating income. Having obtained color printing patents in France, Belgium and Germany as well as Britain, Baxter sold annual licenses to a handful of printers in all of these countries. Some have said that the work of these printers never approached Baxter’s in graceful detail and delicate coloring.

Six years after his process went into the public domain, Baxter liquidated his oil-color printing business and sold off his inventory of prints and intaglio plates and woodblocks to another printer. Part of this arrangement included Baxter’s agreement to provide technical assistance to the new owner.

The reasons for his decision to exit the business are unknown. It is clear that by the 1860s other competing methods such as chromolithography (Engelmann, 1837) and photography (Daguerre, 1839) were challenging the Baxter method in both quality and cost. By 1865, the remainder of Baxter’s printing business went bankrupt.

In late 1866 George Baxter was struck in the head during an accident involving a horse-drawn omnibus. He died at his residence in Sydenham on January 11, 1867 and was buried at Christ Church, Forest Hill in London. A red granite obelisk above his grave bears the inscription “the sole inventor and patentee of oil-colour printing.”

Some believed that Baxter’s significance and contribution had been exaggerated by a cult of enthusiasm built up by clubs and associations organized to collect copies of his works. One such critic, R.M. Burch, wrote of Baxter in 1910, “Had he not been, rediscovered … his name and fame would in all probability have completely passed into the limbo of forgetfulness.”

However, George Baxter is remembered for the lasting impact of his original color printing method and for making color printing popular and viable. Like others before and after him, Baxter’s genius and creative gifts intersected with important changes in the means and methods of printing during his lifetime. It is undeniable that George Baxter played a decisive role in expanding the influence of print upon society during the Victorian era.