As If By Chance: Part VII

Sketches of Disruptive Continuity in the Age of Print from Johannes Gutenberg to Steve Jobs

Johannes Gutenberg and Steve Jobs

Johannes Gutenberg and Steve Jobs

While reviewing nearly six centuries of print technology—through the lives and inventions of significant industry innovators—it became clear that the invention of printing by Johannes Gutenberg on the one side, and the breakthrough of desktop publishing by Steve Jobs on the other, are bookends in the age of print. While it has long been acknowledged that the hand-held type mold and printing press are the alpha in the age of manufacturing production of ink-on-paper forms such as books, newspapers, magazines, etc., the view that desktop publishing is the omega of this age is not necessarily widely held. When viewed within the framework of disruptive continuity, it can be shown that the innovations of Gutenberg and Jobs manifest similar attributes in terms of their dramatic departure from previous methods as well as their connection to the multilayered processes of cultural changes in the whole of society in the fifteenth and twentieth centuries.

The advent in 1985 of desktop publishing—a term coined by the founder of Aldus PageMaker, Paul Brainerd—is associated with Steven P. Jobs because he contributed to its conceptualization, he articulated its historical significance, and he was the innovator who made it into a reality. With the support of publishing industry consultant John Seybold, Jobs went on to integrate the technologies and brought together the people that represented the elements of desktop publishing: a personal computer (Apple Macintosh), page layout software (PageMaker), page description language (Adobe PostScript) and a digital laser printing engine (Canon LBP-CX). He demonstrated the integration of these technologies to the world for the first time at the Apple Computer annual stockholders meeting on January 23, 1985, in Cupertino, California, a truly historic moment in the development of graphic communications.

It is a fact that the basic components of desktop publishing had already been developed in the laboratory at the Xerox Palo Alto Research Center (PARC) by the late 1970s. However, due to a series of issues related to timing, cost and the corporate culture at Xerox, the remarkable achievements at PARC—which Steve Jobs had seen during a visit to the lab in 1979 and inspired his subsequent development of the Macintosh computer in 1984—never saw the light of day as commercial products. As is often the case in the history of technology, one innovator may be the first to theorize about a breakthrough, or even build a prototype, but never fully develop it, while another innovator creates a practical and functioning product based on a similar concept and it becomes the wave of the future. This was certainly the case with desktop publishing, where many of the elements that Jobs would later integrate at the Cupertino demo in 1985—the graphical user interface (GUI), the laser printer, desktop software integrating graphics and text, what-you-see-is-what-you-get (WYSIWYG) printing—were functioning in experimental form at PARC at least six years earlier. 

What became known as the desktop publishing revolution was just that. It was a transformative departure from the previous photomechanical stage of printing technology on a par with the separation of Gutenberg’s invention of mechanized metal printing type production from the handwork of scribes. Desktop publishing brought the era of phototypesetting that began in the 1950s to a close. It also eventually displaced the proprietary computerized prepress systems that had emerged and were associated with Scitex in the late 1970s. Furthermore, and just as significant, desktop publishing pushed the assembly of text information and graphic content beyond the limits of ink-on-paper and into the realm of electronic and digital media. Thus, desktop publishing accomplished several things simultaneously: (1) it accelerated the process of producing print media by integrating content creation—including the design of text and graphics into a single electronic document on a personal computer—with press manufacturing processes; (2) it expanded the democratization of print by enabling anyone with a personal computer and laser printer to produce printed material starting with a copy of one; (3) it created the basis for the mass personalization of print media and; (4) it laid the foundation for the expansion of a multiplicity of digital media forms within a decade, including electronic publishing in the form of the Portable Document Format (PDF), e-books, interactive media and, ultimately, contributed the global expansion and domination of the Internet and the World Wide Web.

Just as Gutenberg attempted to replicate in mechanized form the handwriting of the scriptoria, the initial transition to digital and electronic media by desktop publishing carried over the various formats of print, i.e., books, magazines, newspaper, journals, etc., into digital files stored on magnetic and optical storage systems such as computer floppy disks, hard drives and compact disks. However, the expansion of electronic media—which was no longer dimensionally restricted by page size or number of pages but limited by data storage capacity and the bandwidth of the processing and display systems—brought the phenomenon of hyperlinks and drove entirely new communications platforms for publishing text, graphics, photographs and audio and video, eventually on mobile wireless devices. Through websites, blogs, streaming content and social media, every individual can record and share their life story, can become a reporter and publisher or participate in, comment on and influence events anywhere in the world.

The groundbreaking significance of desktop publishing, which straddled both the previous printing and the new digital media ages, can be further illustrated by going through the above description by Will Durant of the impact Gutenberg’s invention and substituting the new media for printing and the other contemporary elements of social, intellectual and political life for those the historian identified in the 1950s about the fifteenth century:

To describe all the effects of desktop publishing and electronic media would be to chronicle well more than half the history of the modern mind. … It replaced all informational print by republishing it online as text or in more complex graphical formats like PDF, with methods for managing versions and protecting authenticity so that scholars and researchers in diverse countries may work with one another through video streaming and virtual reality tools, allowing entry of new information and data to be gathered, published and shared in real time as though they were sitting in the same room. … Online electronic media made available to the public all of the world’s manuals and procedural instructions; with the development of international collaborative projects such as Wikipedia, it became the greatest tool for learning that has ever existed, at no charge and available to all. It did not produce Modernism or the information age, but it further paved the way for a new stage of human society that had been promised by the American and French revolutions, based on democracy and where genuine equality exists as a fundamental right for everyone. It made the entire library of literature, music, fine and industrial arts, architecture, theater, athletic competition and cinema instantly available anywhere and at any time in the palm of the hand and prepared the people for an understanding of the role of mythology, mysticism and superstition in history by demonstrating the application of a scientific and materialist outlook in everyday life. It ended the monopoly of news by corporate and state publishers and the control of learning by educational institutions managed by the prevailing ruling classes. It encouraged the streaming of live video by anyone to the entire world’s audience of mobile device owners that could never have been reached through printed media. It facilitated global communication and cooperation of scientists and enabled the launching of the international space station and the sending of multiple probes to the surface of Mars and beyond. It affected the quality and character of all published literature and information by subjecting authors and journalists to the purse and taste of billions of regular working people in both the advanced and lesser developed countries rather than to just the middle and upper classes. And, after speech and print, desktop publishing, online and social media provided a readier instrument for the dissemination of nonsense and disinformation than the world has ever known. 

Up to the present, the new media has not yet displaced print the way print eventually replaced the scribes. It is likely that printing on paper will continue to exist well into the future in a similar manner that the ancient art of pen-and-ink calligraphy has continued to exist alongside of print for centuries long after the last scriptorium was shut down. Meanwhile, electronic media such as e-books have contributed to a resurgence of printed books and, after the initial fascination with the electronic devices such as Amazon’s Kindle, the popularity and thirst of the public for books has increased, particularly following the onset of the coronavirus pandemic. While the forced separation of people from each other has driven up the use of digital tools such as online video meetings, events and gatherings, the self-isolation of reading a printed book has suddenly peaked again. 

Considerable effort has been made to replicate the experience of reading print media in electronic form. The advent of e-paper—the simulation of the look and feel of ink-on-paper which was pioneered at Xerox PARC in the 1970s (Nick Sheridan, Gyricon)—is an attempt to adapt two-dimensional digital display technologies to mimic the reading experience of the printed page. Since then, studies have shown that paper-based books yield superior reading retention to that of e-books. This is not so much because of the appearance of the printed page and its impact on visual perception as it is the tactile experience and spatial awareness connected with turning physical pages and navigating through a volume that contains a table of contents and an index.

In 2012, during a presentation at the DRUPA International Printing and Paper Expo in Düsseldorf, Germany, Benny Landa, the pioneer of digital printing who developed the Indigo Press in 1993, said the following:

I bet there is not one person in this hall that believes that two hundred years from now man will communicate by smearing pigment onto crushed trees. The question on everyone’s mind is when will printed media be replaced by digital media. … It will take many decades before printed media is replaced by whatever it will be … many decades is way over the horizon for us and our children.

Since Landa’s talk at DRUPA was part of the introduction of a new press with a digital printing method called he called nanography, he was emphasizing that we need to live and work in the here and now and not get too far ahead of ourselves. Landa’s nanographic press is based on advanced imaging technology that transfers a film of ink pigment to almost any printing surface which is multiple magnitudes thinner than either offset or other digital presses. By removing the water in the inkjet process, the fusing of toner to paper in the xerography and the petroleum-based vehicles that carry pigment in traditional offset presses, nanography dramatically reduces the cost of reproduction by focusing on the transfer ultra-fine droplets of pure pigment (nanoink) first to a blanket and then to the substrate. The aim of nanography is to keep paper-based media economically viable by providing a variable imaging digital press that can compete with the costs of offset lithography and accommodate the needs of the hybrid digital and analog commercial printing marketplace.

While print volumes are in decline, society is not yet ready to make a full transition to electronic media and move entirely away from paper communications. This is a serious dilemma facing those working in the printing industry who are trying to navigate the difficulties of maintaining a viable business in an environment where print remains in demand—in some segments it is growing—but overall, it is a shrinking percentage of economic activity. With greater numbers of people and resources being redirected to communications and marketing products in the more promising and profitable big tech and social media sectors, the printing industry is being starved of talent and economic resources.

Rather than trying to put a date on the moment of transition to a post-printing and fully-digital age of communications, the more relevant question is how it will be accomplished. Landa had it right when he said that today most people believe that two hundred years from now, man will no longer communicate by “smearing pigment onto crushed trees.” When the character of print media is put in these terms, the historical distance of this analog form of communications from the long-term potential of the present digital age becomes clearer. Still, no clear vision or roadmap has yet been articulated for what is required for civilization to elevate itself beyond the age of print.

It is difficult to discuss the moment of a complete progression of human communication methods from Gutenberg to Jobs without reference to the work of the Canadian media theorist Marshall McLuhan. Although McLuhan’s presentation lacked a coherent perspective and tended to drift about in what he called the “mosaic approach,” he made numerous prescient observations about the forms of media and the evolution of communications technology. Sharing elements of the theory of disruptive continuity, McLuhan focused in on the reciprocal interaction of the modes of communication—spoken, printed and electronic—with the broader societal economic, cultural and ideological transformations in world history. He emphasized the way these transitions each fundamentally altered man’s consciousness and self-image. He also recognized that there was presently a “clash” between what he called the culture of the “electric age” with that of the age of print. During an interview with the British Broadcasting Corporation in 1965, McLuhan explained how he saw technology as an extension of man’s natural capabilities:

If the wheel is an extension of feet, and tools of hands and arms, then electromagnetism seems to be in its technological manifestations an extension of our nerves and becomes mainly an information system. It is above all a feedback or looped system. But the peculiarity, you see, after the age of the wheel, you suddenly encounter the age of the circuit. The wheel pushed to an extreme suddenly acquires opposite characteristics. This seems to happen with a good many technologies— that if they get pushed to a very distant point, they reverse their characteristics.

Among McLuhan’s most significant contributions are found in his 1962 work, The Gutenberg Galaxy: The Making of Typographical Man. He discusses the reliance of primitive oral culture upon auditory perception and the elevation of vision above hearing in the culture of print. He wrote his study, “is intended to trace the ways in which the forms of experience and of mental outlook and expression have been modified, first by the phonetic alphabet and then by printing.” For McLuhan, the transformations from spoken word culture to typography and from typography to the electronic age extended beyond the mental organization of experience. In the Preface to The Gutenberg Galaxy, McLuhan summarized how he saw the interactive relationship of media forms with the whole social environment:

Any technology tends to create a new human environment. Script and papyrus created the social environment we think of in connection with the empires if the ancient world. … Technological environments are not merely passive containers of people but are active processes that reshape people and other technologies alike. In our time the sudden shift from the mechanical technology of the wheel to the technology of electric circuitry represents one of the major shifts of all historical time. Printing from movable types created a quite unexpected new environment—it created the public. Manuscript technology did not have the intensity or power of extension necessary to create publics on a national scale. What we have called “nations” in recent centuries did not, and could not, precede the advent of Gutenberg technology any more than they can survive the advent of electric circuitry with its power of totally involving all people in all other people.

As early as 1962—seven years before the creation of the Internet and nearly three decades before the birth of the World Wide Web—McLuhan anticipated the historical, far-reaching and revolutionary implications of the information and electronic age on the global organization of society. Although he eschewed determinism in any form, McLuhan pointed to the potential for electronic media to drive mankind beyond the national particularism which is rooted in the technical, socio-historical and scientific eras connected with the age of print. McLuhan later used the phrase “global village” to describe his vision of a higher form of non-national organization driven by the methods of human interaction that were brought on by “the advent of electric circuitry” and “totally involve all people in all other people.” For McLuhan, the transformation from the typographic and mechanical age to the electric age began with the telegraph in the 1830s. The new media created by the properties of electricity were expanded considerably with telephone, radio, television and the computer in the nineteenth and twentieth centuries. McLuhan also wrote that the electronic media transformation revived oral culture and displaced the individualism and fragmentation of print culture with a “collective identity.”

McLuhan’s examination of the historical clash of the electronic media with the social environment of print culture and his prediction that a new collective human identity will be established from the transition to a global structure beyond the present fragmented national identities is highly significant. It points to the coming of the societal transformations that will be required for electronic media to thoroughly overcome print media as a completed historical process. In a similar way that Gutenberg’s invention spread across Europe and the world and planted the seeds of foundational transformation—in technology, politics and science—that developed over the next three and a half centuries, we are today likewise in the incubator of the new global transformation of electronic media. With this historically dynamic way of understanding the present, the worldwide spread of smartphones and social media to billions of people, despite national barriers placed upon the exchange of information as well as other differences such as language and ethnicity, humanity is being transformed with the emergence of a new homogeneous global culture. For this development to achieve its full potential, the social organization of man must be brought into alignment and there is no reason to believe that this adjustment from nations to a higher form of organization will take place with any less discontinuity than that of the period of world history that began with the rapid development of printing technology, the Enlightenment and the American and French Revolutions.

There are scientists and futurists who either proselytize or warn about the coming of the technological singularity, i.e., the moment in history when electronic media convergence and artificial intelligence will completely overtake the native capacities of humanity. The argument goes that these extensions of man will become irreversible, and civilization will be transformed in unanticipated ways either toward a utopian or dystopian future, depending on whether one supports or opposes the promises of the singularity. The twentieth century philosophical and intellectual movement known as transhumanism promotes the idea that the human condition will be dramatically improved through advanced technologies and cognitive enhancements. The dystopian opponents of transhumanist utopianism argue that technological advancements such as artificial intelligence should not be permitted to supplant the natural powers of the human mind on the grounds that they are morally compromising, and such a development poses an existential threat to society. Among these competing views, however, is the shared notion that the coming transformation of mankind will take place without a fundamental change in the social environment. Both the supporters and opponents of transhumanism envision that the extensions of man will evolve independently of any realignment of the economic or cultural foundations of society.

However, it is not possible to prognosticate about the future of communications technology outside of an understanding that the tendencies present in embryonic form nearly six centuries ago—particularly the democratization of information and knowledge that been vastly expanded in our time—bring with them powerful impulses for broad and fundamental societal change. In a world where every individual has the potential to communicate as both publisher and consumer of information with everyone else on the planet—regardless of geographic location, ethnicity, language or national origin—it appears entirely possible and necessary that new and higher forms of social organization must be achieved before this new media can carve a path to a truly post-printing age of mankind. While the existential threats are real, they do not come from the technology itself. The danger arises from the clash of the existing social structures against the expanding global integration of humanity. We have every reason to be optimistic about taking this next giant step into the future.

Concluded

As If By Chance: Part I

Sketches of Disruptive Continuity in the Age of Print from Johannes Gutenberg to Steve Jobs

Drawing Hands by M.C. Escher, 1948

Everything existing in the Universe is the fruit of chance and necessity.

Democritus, circa 400 BC

Necessity is blind only so long as it is not understood.

G. W. F. Hegel, 1817

The understanding that there is no element of chance around or in us, but that all things, both mind and matter, follow an ordered pattern, supports the argument that even the simplest blot or scribble cannot exist by pure chance or without significance, but rather that the viewer does not clearly recognize the causes, origins, and occasion of such a “drawing.”

Adrian Frutiger, 1989

It is notable that some inventions in the history of print technology are recorded as having been achieved by chance. In accounts written at the time of the inventions as well as in the historical reviews, major breakthroughs in printing are attributed to accidental events. Much in the same way school children are taught that the natural scientist Isaac Newton discovered the law of gravitation after an apple fell from a tree upon his head, significant inventions in the history of printing are said to be the result of lucky mistakes.

Perhaps the two most well-known examples of this phenomenon are found in accounts of the late eighteenth century invention of lithography by Alois Senefelder and the early twentieth century invention of offset printing by Ira Washington Rubel. In both cases, the technical advances made by the inventors are frequently explained as having been accidental. Here are two citations:

Lithography was invented around 1796 in Germany by an otherwise unknown Bavarian playwright, Alois Senefelder, who accidentally discovered that he could duplicate his scripts by writing them in greasy crayon on slabs of limestone and then printing them with rolled-on ink.

Department of Drawings and Prints, The Metropolitan Museum of Art, October 2004

Offset printing, also called offset lithography, or litho-offset, in commercial printing, widely used printing technique in which the inked image on a printing plate is printed on a rubber cylinder and then transferred (i.e., offset) to paper or other material. The rubber cylinder gives great flexibility, permitting printing on wood, cloth, metal, leather, and rough paper. An American printer, Ira W. Rubel, of Nutley, N.J., accidentally discovered the process in 1904 and soon built a press to exploit it.

The Editors of Encyclopædia Britannica, July 1998

Readers of these passages would not be blamed for thinking that Senefelder of Bavaria, Germany in 1796 and Rubel of Nutley, New Jersey in 1904 were the beneficiaries of pure luck or that they fortuitously stumbled their way into print technology history. However, this would be an incorrect—or, at best, an incomplete—way of understanding the contributions of these two innovators.

Why does the word “accidentally” appear in the above accounts of historic inventions that took place more than one hundred years apart and which, together, established what is known as offset lithography, a technology that revolutionized the printing industry and remains today the dominant method of transferring ink to paper? Why is it that stories of accidental invention—even from authoritative sources like the Metropolitan Museum of Art and Encyclopædia Britannica—persist for both men, in spite of ample evidence that Senefelder and Rubel were in pursuit of innovation and striving to improve the printing process through methods of ingenuity, experimentation and science that prevailed during their respective lifetimes?

Finding answers to these questions requires investigative journey. While it may be a fact of popular interest that Senefelder and Rubel are known as much—or even more—for the accidental way they arrived at their achievements than they are for the significance of the achievements themselves, it is also a fact that invention by happenstance has occurred in history more often than is generally known. Since the “accidental” attribution tends to overshadow and mystify the progress attained—in printing as well as other industries—it is instructive to examine these two inventions in their socio-economic context and to locate the place of Senefelder and Rubel within the whole history of printing. Such an examination shows that their accomplishments were absolutely necessary advancements.

To untangle the riddle of accidental invention in the specific cases of Senefelder and Rubel, it is necessary to: (1) investigate the historical record and review the facts of what is known about the men and how they invented lithography and offset printing; (2) look outside print technology and into the prevalence of “serendipity” more broadly in the history of scientific and technological discovery; (3) explore the source of the need for the legends of accidental discovery in human progress; (4) make a theoretical analysis of the two-sided and contradictory content of “accidents” in general; and, (5) return to Senefelder and Rubel and show how their inventions were manifestations of disruptive continuity in the history of printing.

The concept of disruptive continuity applies to the development of printing—as well as all human technical progress—because it acknowledges that each innovation owes its emergence to the accomplishments of others that came beforehand; that significant innovation could not take place without innumerable connections to the past. At the same time, disruptive continuity also recognizes that each new breakthrough represents a sharp departure from the past. It is a transition point forward that expresses the future in ways that were previously impossible and could not have been accomplished but for the spark of genius embedded in the new innovation.

As this introduction will go on to explain, it is at this nexus point of discontinuity from the prior gradual progression and the moment of a leap into the future that the phenomenon of accidental invention occurs. To understand how unanticipated events, which are rooted in antecedent accomplishments, can and do become transformed into significant innovations is to understand the mechanism by which the old era of technology is superseded by that of an entirely new era of progress.

Finally, by developing a socio-historical-technical analysis of nearly six centuries of print communications—based on the theory of disruptive innovation—significant conclusions can be drawn about the future of ink-on-paper media within the new environment dominated by online, mobile, social and streaming content delivery systems.

* * * * *

The investigative journey begins with an examination of the work of the two printing innovators who are frequently remembered as accidental inventors. It is fortunate that, in the case of Senefelder, an account written by the inventor himself is available and, in the case of Rubel, there exists two technical explanations, an anecdotal account and a posthumous tribute to the inventor written by a close business partner at the time of his death.

The invention of lithography

In 1817, at the urging of his colleagues, Alois Senefelder wrote down the story of his life along with a detailed description of how he invented lithography by experimental methods. He also provided a step-by-step technical guide for those wishing to learn and practice the art also known as “printing from a stone” or “stone printing.” Senefelder’s account was published one year later in the German volume entitled Vollständiges Lehrbuch der Steindruckerey (A Complete Course of Lithography). The work was translated into English by J.W. Muller and published by The Fuchs & Lang Manufacturing Company in New York in 1911 as The Invention of Lithography.

The relevant passages from the 1911 English text are found in the first chapter, “Section I: History of Stone Printing, Part I: From 1796 to 1800.”

As mentioned in the above quote from the Metropolitan Museum of Art, the young Alois Senefelder was an aspiring playwright and was motivated to start a printing firm so that he could publish his own works. Senefelder wrote that he was familiar with the procedures of the letterpress printing process of his day, “I had spent many a day in the establishments,” and that “it would not be hard for me to learn.” Senefelder also had a “desire to own a small printing establishment myself” because—having studied both public finance and law for three years at the University of Ingolstadt—he wanted to “earn a decent living” and “become an independent man” by going into business.

However, it was economic reality—a lack of the financial resources required to become a printer—that drove Senefelder down the path of innovation. As he wrote, “If I had possessed the necessary money, I would have bought types, a press and paper, and printing on stone probably would not have been invented so soon. The lack of funds, however, forced me to other expedients.”

Senefelder gave details of three different approaches he took in an effort to replicate the letterpress method without the ability to purchase the technologies that were readily available to others with the requisite capital resources. These were:

  1. To etch letters in steel and then “impressing them on pear wood, in which the letters would show in relief, somewhat like the cast type of the book printers, and they could have been printed like a wood-cut.” He abandoned the approach, “I had to give up the whole thing through lack of implements and sufficient skill in engraving.”
  2. To purchase “enough types to set one column or folio” and transfer the letters “to a board covered with soft sealing-wax, and reproduce the relief plate thus obtained in stereotype form.” Although this method was a technical success—especially after he began “mixing finely powdered gypsum with the sealing-wax” and “made the latter harder than the ordinary type composition”—Senefelder was unable to move forward because, “even this exceeded my financial power.” He gave up on this plan, “especially as I had conceived a new one during my experiments.”
  3. To learn “to write out ordinary type letters exactly, but reversed” with “an elastic steel pen on a copper plate covered in ordinary manner with etching surface” and these plates would be given to copper-plate printers for the press work. Here, Senefelder had difficulties because, though he learned quickly the skill of writing in reverse, “I could not correct the errors made during writing” because the “accessories of copper-plate engravers, especially the so-called cover varnish, were quite unknown to me.”

Senefelder then “labored desperately to overcome the difficulty” and tried three sub-methods within this “elastic steel pen” approach:

(a) Having “attained much chemical knowledge” during his days as a student, Senefelder began working with “spirits of wine and various resinous forms” and “oil of turpentine and wax” as methods for making corrections on the copper plate. However, he abandoned these materials because the chemical solution frequently became heavily diluted and “caused it to flow too much and dissolve the etching surface, at which time several well-done parts of the engraving were ruined.”

(b) Still determined to work with copper plate, Senefelder experimented with a wax and soap mixture as a material that could be used for correcting mistakes. He used, “a mixture of three parts of wax with one part of common tallow soap, melted over the fire, mixed with some fine lampblack, and then dissolved in rainwater, gave me a sort of black ink with which I could correct faulty spots most easily.” But this path “presented a new difficulty” in that he had only a “single little copper plate,” and, after he “pulled proofs at the house of a friend who possessed a copper-plate press,” he had to spend “hours again laboriously grinding and polishing the plate, a process which also wore away the copper fast.”

(c) To get around the limited copper plate resources, Senefelder transitioned to experimentation with “an old zinc plate of my mother’s,” that was “easier to scrape and polish.” However, “the results were very unsatisfactory,” because the “zinc probably was mixed with lead,” and he did not have a “more powerful acid” that could penetrate it.

Finally, Senefelder moved on to transferring a printed image to paper based on “a handsome piece of Kellheimer stone.” He explained, “The experiments succeeded, and though I had not thought originally that the stone itself might be used for printing (the samples I had seen hitherto of this Kellheim limestone were too thin to withstand the pressure exerted in printing), I soon began to believe that it was possible. It was much easier to do good work on the stone than on the copper.”

He began working “in order to use the stone just like copper” and trying “all possible kinds of polishing and grinding without attaining my purpose completely.” Senefelder wrote that moving from copper or zinc plate to printing from a limestone did not immediately result in the invention of lithography, “I had invented little that was new, but simply had applied the copper-plate etching method to stone.” And furthermore, “I was not the first discoverer of stone-etching, nor of stone-printing; and only after I made this new discovery which I will describe now, which led me from the engraved to the relief process, with my new ink, might I call myself the inventor of an art.”

In the midst of his detailed survey, Senefelder made it clear that he decided to write his account in 1817 in order to set the record straight, “I have told all of these things fully in order to prove to the reader that I did not invent stone-printing through lucky accident, but that I arrived at it by a way pointed out by industrious thought.”

However, he went on to say that his experiments with etched, i.e., mechanical and relief and not yet chemical, processes on stone “were entirely checked by a new, accidental discovery. Until now I had invented little that was new, but simply had applied the copper-plate etching method to stone. But this new discovery founded an entirely new form of printing, which basically became the foundation of all succeeding methods.” [Emphasis added]

Senefelder then recounted his well-known story of accidental invention:

I had just ground a stone plate smooth in order to treat it with etching fluid and to pursue on it my practice in reverse writing, when my mother asked me to write a laundry list for her. The laundress was waiting, but we could find no paper. My own supply had been used up by pulling proofs. Even the writing-ink was dried up. Without bothering to look for writing materials, I wrote the list hastily on the clean stone, with my prepared stone ink of wax, soap, and lampblack, intending to copy it as soon as paper was supplied.

As I was preparing afterward to wash the writing from the stone, I became curious to see what would happen with writing made thus of prepared ink …

My further experiments with this relief plate succeeded far better than my previous ones with etched letters. The inking in was much easier, and hardly one quarter of the force was necessary for making impressions. Thus the stones were not so liable to crack, and, what was the most important for me, this method of printing was entirely new, and I might hope to obtain a franchise and even financial aid.

It would take further experimentation with the stone by Senefelder to finally arrive at the invention of lithography, “Even this method, new in 1796, still was purely mechanical in its purpose, whereas the present printing method, which I began in 1799, may be called purely chemical.”

The following can drawn from the above summary of Senefelder’s own account of his invention: (1) Senefelder began in 1796 by experimenting and practicing with multiple materials and chemicals as he sought to develop an affordable mechanical printing process that was less capital intensive than the letterpress method; (2) he insisted that he did not invent lithography “through a lucky accident” but by way of “industrious thought”; (3) he stated that his efforts to come up with an alternative mechanical method to letterpress “were entirely checked by a new, accidental discovery”; (4) he told the story of how, while working with a limestone as a mechanical image transfer base, he wrote a laundry list upon the stone and from here new possibilities then occurred to him; (5) it would take three more years of further experimentation with the limestone before the “purely chemical” printing method was discovered in 1799 that become known as lithography.

It is highly significant that in his own account Senefelder presented two different and internally contradictory explanations for how he made his breakthrough. In one sentence, he wrote that he did not invent lithography by “lucky accident” but by “industrious thought” and, in another sentence, he said his experiments with mechanical methods on limestone “were entirely checked by a new, accidental discovery” that subsequently led to his invention of the “art” of the purely chemical method of printing.

This shows that Senefelder was perplexed in his attempt to explain the two opposing determinations that both appeared to him as true. Since he could not have expressed the genuine relationship between accident and necessity in the invention of lithography in a clear and scientific manner, Senefelder instead gave two separate and mutually conflicting explanations for how it happened.

It becomes plain from this that it is Senefelder himself who is responsible for two different stories: one stating that he invented lithography by an “accidental discovery” and another that he arrived at stone-printing not “through lucky accident” but by deliberately experimental methods. While this explanation appears to confound rather than clarify matters, Senefelder’s contradictory elaboration provides an important clue to solving the riddle of why stories of chance discovery have come to predominate.

On Benjamin Franklin’s 313th birthday: The continuing public importance of printed books

The following introductory remarks were delivered to the 36th Annual Michigan Printing Week Association Ben Franklin Awards Dinner on Tuesday, January 15, 2019.

A portrait of Benjamin Franklin at his study in London in 1767

Good Evening,

On behalf of the Printing Industries of Michigan and the Michigan Printing Week Committee, I would like to welcome you to the Annual Ben Franklin Awards Dinner.

My name is Kevin Donley and it is once again my privilege to serve as your Master of Ceremonies this evening.

We are meeting tonight for the 36th year to acknowledge the contributions of our industry colleagues and to raise money for the education of a new generation of printing professionals.

Tonight, we will be recognizing Admore as Company of the Year and William Kessler as Individual of the Year recipients of the Ben Franklin Award. We will also be recognizing two graphic arts students who are deserving recipients of the Ben Franklin college scholarships.

This year we mark Benjamin Franklin’s 313thbirthday. As always, it is appropriate to take a few moments to look back on Franklin’s life for the benefit of both inspiration and, by connecting our own time to his, for insight.

As many of you know, one of Ben Franklin’s enduring contributions was the establishment of the first public library. At the age of just twenty-five, Franklin and a group of his tradesmen friends—who were members of a debating club called the Junto—established what would become The Library Company of Philadelphia, an institution that exists to this day.

Among other things, Franklin believed that the only way to settle debates during the Friday night Junto meetings was to consult authoritative printed texts. In this way, the Junto library became something of a colonial version of what we know today as fact checking.

Franklin drafted the Articles of Association for the The Library Company of Philadelphia and they were signed by 40 subscribers and dated July 1, 1731

However, at that time, standard English reference works were very expensive and hard to find in colonial America. At Franklin’s suggestion the group decided to pool their resources and signed up fifty subscribers who invested 40 shillings and then agreed to pay ten shillings per year for fifty years thereafter. They bought books and rented the facilities needed to establish and maintain the first American lending library.

If you were a subscriber, you could borrow the books in the library. If you were a member of the public, you were able to come into the library and read the books available in the collection.

For Ben Franklin, who never took credit for the idea, there was much more to the library than settling matters of opinion and debate. From the time he was a teenager and throughout his entire life, Franklin was in pursuit of his own intellectual development and education. He also consistently shared and encouraged the same among his fellow citizens.

As Franklin wrote in his autobiography, “these libraries have improved the general conversation of Americans, made the common tradesmen and farmers as intelligent as most gentlemen from other countries, and perhaps have contributed in some degree to the stand so generally made throughout the colonies.”

In other words, writing these lines toward the end of his life, Franklin saw a connection between the public lending of books to the average citizens, the level of discourse within the colonies and the movement for American independence.

Books. Ben Franklin was talking about the importance of books. We always have to remember that—even though many of us are involved in marketing and promotional printing today—our industry is connected with this history; that our industry is rooted in great traditions associated with literacy and public awareness and the sharing and spreading of great ideas.

Here in Michigan, we know something about books. Despite some challenges we have faced recently in our local book manufacturing capacity, we remain a major producer of printed books for publishers across the country and around the world.

Now, after more than a decade of speculation about the imminent death of print brought on by electronic technologies, trade book sales have increased for five years in a row. Meanwhile, the number of independent book stores has grown by 40% over the past ten years.

What’s more, while the number of printed books has been growing again, sales of eBooks—and especially children’s eBooks—have been declining by double digits every year since 2015.

What does this mean? Are we going back to the days prior to the personal computer and the Internet when going to the library or the encyclopedia was the only way to consult authoritative texts? Of course not. It should be pointed out, for example, that the growth of printed book sales can be traced entirely to one retail company: Amazon.

In any case, there is an ongoing public thirst for printed books. Part of this attraction is reading for entertainment and reading as part of a social experience. It has been reported, for instance, that Instagram is partially responsible for the growth of indie bookstores. Using the hashtag #bookstagram, 25 million photos of bookstores have been shared on Instagram. People are being drawn to these boutique bookshops to find the perfect match for their reading style and subject interests.

Another part of this loyalty to printed books is that people are increasingly today—as in Ben Franklin’s time—looking to settle arguments and answer the big questions of our time.

As for the preference for printed books over eBooks, it turns out that we all have something called “spatial orientation memory” that is hard-wired into our brains. This particular type of memory is the part of human psychophysiology that helps us locate where we are in the broader immediate context.

When we read a book, we are subconsciously relying on the tactile experience of our location on a page and within the chapters of a book. This is one of the key aspects of how we remember what we have read; spatial orientation memory is an enabler of reading comprehension and retention.

What all of this shows is that ink-on-paper print still holds tremendous authority and value with the public. While people are excited about the latest gadgetry, they are also understanding more and more clearly that learning and education, especially the teaching of children, depends upon a full sensory engagement with books. This is an experience that cannot today be, as of yet, duplicated by electronic devices and digital displays.

This dependent relationship of the public upon print also extends into the realm of information, marketing and communications. After a decade of enthusiasm and hype about the benefits of digital and social media, the ongoing problems associated with the credibility of these formats is driving renewed interest in print.

Study after study has proven that response rates for direct mail are magnitudes greater than email and social advertising. The public, including old-timers like me as well as millennials, go to the mail box each day with anticipation. We remember what we see there because we engage physically with it, even if it goes within seconds from our hands to the wastebasket.

So, it is on this note of optimism about our great printing industry that we will begin our award presentations this evening. Thank you very much for allowing me to introduce the 2019 Ben Franklin Awards Dinner!