As If By Chance: Part VII

Sketches of Disruptive Continuity in the Age of Print from Johannes Gutenberg to Steve Jobs

Johannes Gutenberg and Steve Jobs

Johannes Gutenberg and Steve Jobs

While reviewing nearly six centuries of print technology—through the lives and inventions of significant industry innovators—it became clear that the invention of printing by Johannes Gutenberg on the one side, and the breakthrough of desktop publishing by Steve Jobs on the other, are bookends in the age of print. While it has long been acknowledged that the hand-held type mold and printing press are the alpha in the age of manufacturing production of ink-on-paper forms such as books, newspapers, magazines, etc., the view that desktop publishing is the omega of this age is not necessarily widely held. When viewed within the framework of disruptive continuity, it can be shown that the innovations of Gutenberg and Jobs manifest similar attributes in terms of their dramatic departure from previous methods as well as their connection to the multilayered processes of cultural changes in the whole of society in the fifteenth and twentieth centuries.

The advent in 1985 of desktop publishing—a term coined by the founder of Aldus PageMaker, Paul Brainerd—is associated with Steven P. Jobs because he contributed to its conceptualization, he articulated its historical significance, and he was the innovator who made it into a reality. With the support of publishing industry consultant John Seybold, Jobs went on to integrate the technologies and brought together the people that represented the elements of desktop publishing: a personal computer (Apple Macintosh), page layout software (PageMaker), page description language (Adobe PostScript) and a digital laser printing engine (Canon LBP-CX). He demonstrated the integration of these technologies to the world for the first time at the Apple Computer annual stockholders meeting on January 23, 1985, in Cupertino, California, a truly historic moment in the development of graphic communications.

It is a fact that the basic components of desktop publishing had already been developed in the laboratory at the Xerox Palo Alto Research Center (PARC) by the late 1970s. However, due to a series of issues related to timing, cost and the corporate culture at Xerox, the remarkable achievements at PARC—which Steve Jobs had seen during a visit to the lab in 1979 and inspired his subsequent development of the Macintosh computer in 1984—never saw the light of day as commercial products. As is often the case in the history of technology, one innovator may be the first to theorize about a breakthrough, or even build a prototype, but never fully develop it, while another innovator creates a practical and functioning product based on a similar concept and it becomes the wave of the future. This was certainly the case with desktop publishing, where many of the elements that Jobs would later integrate at the Cupertino demo in 1985—the graphical user interface (GUI), the laser printer, desktop software integrating graphics and text, what-you-see-is-what-you-get (WYSIWYG) printing—were functioning in experimental form at PARC at least six years earlier. 

What became known as the desktop publishing revolution was just that. It was a transformative departure from the previous photomechanical stage of printing technology on a par with the separation of Gutenberg’s invention of mechanized metal printing type production from the handwork of scribes. Desktop publishing brought the era of phototypesetting that began in the 1950s to a close. It also eventually displaced the proprietary computerized prepress systems that had emerged and were associated with Scitex in the late 1970s. Furthermore, and just as significant, desktop publishing pushed the assembly of text information and graphic content beyond the limits of ink-on-paper and into the realm of electronic and digital media. Thus, desktop publishing accomplished several things simultaneously: (1) it accelerated the process of producing print media by integrating content creation—including the design of text and graphics into a single electronic document on a personal computer—with press manufacturing processes; (2) it expanded the democratization of print by enabling anyone with a personal computer and laser printer to produce printed material starting with a copy of one; (3) it created the basis for the mass personalization of print media and; (4) it laid the foundation for the expansion of a multiplicity of digital media forms within a decade, including electronic publishing in the form of the Portable Document Format (PDF), e-books, interactive media and, ultimately, contributed the global expansion and domination of the Internet and the World Wide Web.

Just as Gutenberg attempted to replicate in mechanized form the handwriting of the scriptoria, the initial transition to digital and electronic media by desktop publishing carried over the various formats of print, i.e., books, magazines, newspaper, journals, etc., into digital files stored on magnetic and optical storage systems such as computer floppy disks, hard drives and compact disks. However, the expansion of electronic media—which was no longer dimensionally restricted by page size or number of pages but limited by data storage capacity and the bandwidth of the processing and display systems—brought the phenomenon of hyperlinks and drove entirely new communications platforms for publishing text, graphics, photographs and audio and video, eventually on mobile wireless devices. Through websites, blogs, streaming content and social media, every individual can record and share their life story, can become a reporter and publisher or participate in, comment on and influence events anywhere in the world.

The groundbreaking significance of desktop publishing, which straddled both the previous printing and the new digital media ages, can be further illustrated by going through the above description by Will Durant of the impact Gutenberg’s invention and substituting the new media for printing and the other contemporary elements of social, intellectual and political life for those the historian identified in the 1950s about the fifteenth century:

To describe all the effects of desktop publishing and electronic media would be to chronicle well more than half the history of the modern mind. … It replaced all informational print by republishing it online as text or in more complex graphical formats like PDF, with methods for managing versions and protecting authenticity so that scholars and researchers in diverse countries may work with one another through video streaming and virtual reality tools, allowing entry of new information and data to be gathered, published and shared in real time as though they were sitting in the same room. … Online electronic media made available to the public all of the world’s manuals and procedural instructions; with the development of international collaborative projects such as Wikipedia, it became the greatest tool for learning that has ever existed, at no charge and available to all. It did not produce Modernism or the information age, but it further paved the way for a new stage of human society that had been promised by the American and French revolutions, based on democracy and where genuine equality exists as a fundamental right for everyone. It made the entire library of literature, music, fine and industrial arts, architecture, theater, athletic competition and cinema instantly available anywhere and at any time in the palm of the hand and prepared the people for an understanding of the role of mythology, mysticism and superstition in history by demonstrating the application of a scientific and materialist outlook in everyday life. It ended the monopoly of news by corporate and state publishers and the control of learning by educational institutions managed by the prevailing ruling classes. It encouraged the streaming of live video by anyone to the entire world’s audience of mobile device owners that could never have been reached through printed media. It facilitated global communication and cooperation of scientists and enabled the launching of the international space station and the sending of multiple probes to the surface of Mars and beyond. It affected the quality and character of all published literature and information by subjecting authors and journalists to the purse and taste of billions of regular working people in both the advanced and lesser developed countries rather than to just the middle and upper classes. And, after speech and print, desktop publishing, online and social media provided a readier instrument for the dissemination of nonsense and disinformation than the world has ever known. 

Up to the present, the new media has not yet displaced print the way print eventually replaced the scribes. It is likely that printing on paper will continue to exist well into the future in a similar manner that the ancient art of pen-and-ink calligraphy has continued to exist alongside of print for centuries long after the last scriptorium was shut down. Meanwhile, electronic media such as e-books have contributed to a resurgence of printed books and, after the initial fascination with the electronic devices such as Amazon’s Kindle, the popularity and thirst of the public for books has increased, particularly following the onset of the coronavirus pandemic. While the forced separation of people from each other has driven up the use of digital tools such as online video meetings, events and gatherings, the self-isolation of reading a printed book has suddenly peaked again. 

Considerable effort has been made to replicate the experience of reading print media in electronic form. The advent of e-paper—the simulation of the look and feel of ink-on-paper which was pioneered at Xerox PARC in the 1970s (Nick Sheridon, Gyricon)—is an attempt to adapt two-dimensional digital display technologies to mimic the reading experience of the printed page. Since then, studies have shown that paper-based books yield superior reading retention to that of e-books. This is not so much because of the appearance of the printed page and its impact on visual perception as it is the tactile experience and spatial awareness connected with turning physical pages and navigating through a volume that contains a table of contents and an index.

In 2012, during a presentation at the DRUPA International Printing and Paper Expo in Düsseldorf, Germany, Benny Landa, the pioneer of digital printing who developed the Indigo Press in 1993, said the following:

I bet there is not one person in this hall that believes that two hundred years from now man will communicate by smearing pigment onto crushed trees. The question on everyone’s mind is when will printed media be replaced by digital media. … It will take many decades before printed media is replaced by whatever it will be … many decades is way over the horizon for us and our children.

Since Landa’s talk at DRUPA was part of the introduction of a new press with a digital printing method called he called nanography, he was emphasizing that we need to live and work in the here and now and not get too far ahead of ourselves. Landa’s nanographic press is based on advanced imaging technology that transfers a film of ink pigment to almost any printing surface which is multiple magnitudes thinner than either offset or other digital presses. By removing the water in the inkjet process, the fusing of toner to paper in the xerography and the petroleum-based vehicles that carry pigment in traditional offset presses, nanography dramatically reduces the cost of reproduction by focusing on the transfer ultra-fine droplets of pure pigment (nanoink) first to a blanket and then to the substrate. The aim of nanography is to keep paper-based media economically viable by providing a variable imaging digital press that can compete with the costs of offset lithography and accommodate the needs of the hybrid digital and analog commercial printing marketplace.

While print volumes are in decline, society is not yet ready to make a full transition to electronic media and move entirely away from paper communications. This is a serious dilemma facing those working in the printing industry who are trying to navigate the difficulties of maintaining a viable business in an environment where print remains in demand—in some segments it is growing—but overall, it is a shrinking percentage of economic activity. With greater numbers of people and resources being redirected to communications and marketing products in the more promising and profitable big tech and social media sectors, the printing industry is being starved of talent and economic resources.

Rather than trying to put a date on the moment of transition to a post-printing and fully-digital age of communications, the more relevant question is how it will be accomplished. Landa had it right when he said that today most people believe that two hundred years from now, man will no longer communicate by “smearing pigment onto crushed trees.” When the character of print media is put in these terms, the historical distance of this analog form of communications from the long-term potential of the present digital age becomes clearer. Still, no clear vision or roadmap has yet been articulated for what is required for civilization to elevate itself beyond the age of print.

It is difficult to discuss the moment of a complete progression of human communication methods from Gutenberg to Jobs without reference to the work of the Canadian media theorist Marshall McLuhan. Although McLuhan’s presentation lacked a coherent perspective and tended to drift about in what he called the “mosaic approach,” he made numerous prescient observations about the forms of media and the evolution of communications technology. Sharing elements of the theory of disruptive continuity, McLuhan focused in on the reciprocal interaction of the modes of communication—spoken, printed and electronic—with the broader societal economic, cultural and ideological transformations in world history. He emphasized the way these transitions each fundamentally altered man’s consciousness and self-image. He also recognized that there was presently a “clash” between what he called the culture of the “electric age” with that of the age of print. During an interview with the British Broadcasting Corporation in 1965, McLuhan explained how he saw technology as an extension of man’s natural capabilities:

If the wheel is an extension of feet, and tools of hands and arms, then electromagnetism seems to be in its technological manifestations an extension of our nerves and becomes mainly an information system. It is above all a feedback or looped system. But the peculiarity, you see, after the age of the wheel, you suddenly encounter the age of the circuit. The wheel pushed to an extreme suddenly acquires opposite characteristics. This seems to happen with a good many technologies— that if they get pushed to a very distant point, they reverse their characteristics.

Among McLuhan’s most significant contributions are found in his 1962 work, The Gutenberg Galaxy: The Making of Typographical Man. He discusses the reliance of primitive oral culture upon auditory perception and the elevation of vision above hearing in the culture of print. He wrote his study, “is intended to trace the ways in which the forms of experience and of mental outlook and expression have been modified, first by the phonetic alphabet and then by printing.” For McLuhan, the transformations from spoken word culture to typography and from typography to the electronic age extended beyond the mental organization of experience. In the Preface to The Gutenberg Galaxy, McLuhan summarized how he saw the interactive relationship of media forms with the whole social environment:

Any technology tends to create a new human environment. Script and papyrus created the social environment we think of in connection with the empires if the ancient world. … Technological environments are not merely passive containers of people but are active processes that reshape people and other technologies alike. In our time the sudden shift from the mechanical technology of the wheel to the technology of electric circuitry represents one of the major shifts of all historical time. Printing from movable types created a quite unexpected new environment—it created the public. Manuscript technology did not have the intensity or power of extension necessary to create publics on a national scale. What we have called “nations” in recent centuries did not, and could not, precede the advent of Gutenberg technology any more than they can survive the advent of electric circuitry with its power of totally involving all people in all other people.

As early as 1962—seven years before the creation of the Internet and nearly three decades before the birth of the World Wide Web—McLuhan anticipated the historical, far-reaching and revolutionary implications of the information and electronic age on the global organization of society. Although he eschewed determinism in any form, McLuhan pointed to the potential for electronic media to drive mankind beyond the national particularism which is rooted in the technical, socio-historical and scientific eras connected with the age of print. McLuhan later used the phrase “global village” to describe his vision of a higher form of non-national organization driven by the methods of human interaction that were brought on by “the advent of electric circuitry” and “totally involve all people in all other people.” For McLuhan, the transformation from the typographic and mechanical age to the electric age began with the telegraph in the 1830s. The new media created by the properties of electricity were expanded considerably with telephone, radio, television and the computer in the nineteenth and twentieth centuries. McLuhan also wrote that the electronic media transformation revived oral culture and displaced the individualism and fragmentation of print culture with a “collective identity.”

McLuhan’s examination of the historical clash of the electronic media with the social environment of print culture and his prediction that a new collective human identity will be established from the transition to a global structure beyond the present fragmented national identities is highly significant. It points to the coming of the societal transformations that will be required for electronic media to thoroughly overcome print media as a completed historical process. In a similar way that Gutenberg’s invention spread across Europe and the world and planted the seeds of foundational transformation—in technology, politics and science—that developed over the next three and a half centuries, we are today likewise in the incubator of the new global transformation of electronic media. With this historically dynamic way of understanding the present, the worldwide spread of smartphones and social media to billions of people, despite national barriers placed upon the exchange of information as well as other differences such as language and ethnicity, humanity is being transformed with the emergence of a new homogeneous global culture. For this development to achieve its full potential, the social organization of man must be brought into alignment and there is no reason to believe that this adjustment from nations to a higher form of organization will take place with any less discontinuity than that of the period of world history that began with the rapid development of printing technology, the Enlightenment and the American and French Revolutions.

There are scientists and futurists who either proselytize or warn about the coming of the technological singularity, i.e., the moment in history when electronic media convergence and artificial intelligence will completely overtake the native capacities of humanity. The argument goes that these extensions of man will become irreversible, and civilization will be transformed in unanticipated ways either toward a utopian or dystopian future, depending on whether one supports or opposes the promises of the singularity. The twentieth century philosophical and intellectual movement known as transhumanism promotes the idea that the human condition will be dramatically improved through advanced technologies and cognitive enhancements. The dystopian opponents of transhumanist utopianism argue that technological advancements such as artificial intelligence should not be permitted to supplant the natural powers of the human mind on the grounds that they are morally compromising, and such a development poses an existential threat to society. Among these competing views, however, is the shared notion that the coming transformation of mankind will take place without a fundamental change in the social environment. Both the supporters and opponents of transhumanism envision that the extensions of man will evolve independently of any realignment of the economic or cultural foundations of society.

However, it is not possible to prognosticate about the future of communications technology outside of an understanding that the tendencies present in embryonic form nearly six centuries ago—particularly the democratization of information and knowledge that been vastly expanded in our time—bring with them powerful impulses for broad and fundamental societal change. In a world where every individual has the potential to communicate as both publisher and consumer of information with everyone else on the planet—regardless of geographic location, ethnicity, language or national origin—it appears entirely possible and necessary that new and higher forms of social organization must be achieved before this new media can carve a path to a truly post-printing age of mankind. While the existential threats are real, they do not come from the technology itself. The danger arises from the clash of the existing social structures against the expanding global integration of humanity. We have every reason to be optimistic about taking this next giant step into the future.

Concluded

Steve Jobs (1955 – 2011): Fonts and desktop publishing

Steven P. Jobs’ role in creating the first personal computer (along with his neighborhood friend Steve Wozniak), the founding of Apple Computer and his subsequent firing and return to the company have become part of tech industry lore. His later contributions to mobile, wireless and touch computing—embodied in the Apple iPod, iPhone and iPad—were no less transformative.

Steven P.  Jobs in 1984
Steven P. Jobs in 1984

Although Steve Jobs had extensive knowledge of computer hardware, operating systems and applications—he even worked for a short time in the early 1970s as a technician for Atari—his greatest skills were as technology visionary, marketer and salesman. Without the entrepreneurial drive, leadership charisma and design esthetic of Steve Jobs, Apple would never have emerged as the world’s largest publicly traded corporation; nor would it have the most loyal customers in the history of the consumer products industries.

Owing a great deal to the location and times of his upbringing, Steve Jobs expressed a broad cultural viewpoint and considered every project and product as an aspect of a larger creative purpose. Having developed an enthusiasm for the Bauhaus movement’s form and function philosophy, he identified design simplicity with products that were both beautiful and easy to use.

In his 2012 biography, Walter Isaacson quotes Steve Jobs from the early 1980s, “So that’s our approach. Very simple, and we’re really shooting for Museum of Modern Art quality. The way we’re running the company, the product design, the advertising, it all comes down to this: Let’s make it simple. Really simple.” Jobs rejected the boxy, bulky and dark industrial style of the earlier generation of computer design in favor of elegance and what he later called “taste.”

It was out of this unique blending of art with science and business that Steve Jobs made two significant contributions to typography and printing technology: the creation of computer fonts and the launching of desktop publishing. As with every innovation associated with his name, Jobs relied on the skills of others to realize his vision and then packaged and presented the accomplishments with great fanfare to investors and consumers alike.

Computer Fonts

Jobs’ esthetic sensibility had been formed a decade earlier while he was briefly a student at Reed College in Portland, Oregon in 1972. After dropping out of school, he enrolled in a calligraphy course at Reed taught by Father Robert Palladino. The course had a lasting impact on him.

As Jobs explained in a commencement address he delivered to Stanford University in 2005: “Reed College at that time offered perhaps the best calligraphy instruction in the country. … I learned about serif and san serif typefaces, about varying the amount of space between different letter combinations, about what makes great typography great. It was beautiful, historical, artistically subtle in a way that science can’t capture, and I found it fascinating.”

“None of this had even a hope of any practical application in my life. But ten years later, when we were designing the first Macintosh computer, it all came back to me. And we designed it all into the Mac. It was the first computer with beautiful typography.”

While working with the Macintosh design team, Jobs was involved in every detail of its size, shape and color as well as every icon, window and box of the graphical user interface. This involvement included the design of a group of fonts which he insisted be named for the great cities of the world: Cairo, Chicago, Geneva, London, Los Angeles, Monaco (monospaced system font), New York, San Francisco, Toronto and Venice.

Apple Macintosh font and desktop icon designer Susan Kare, developer Andy Hertzfeld and engineer Bill Atkinson
Apple Macintosh font and desktop icon designer Susan Kare, developer Andy Hertzfeld and engineer Bill Atkinson

Prior to the work of Macintosh designer Susan Kare, developer Andy Hertzfeld and engineer Bill Atkinson on proportional fonts, computers were mostly limited to monospaced typefaces much like a typewriter with al alphanumeric characters and keystrokes the exact same width. Jobs could see that the bitmapped display of the Macintosh desktop was capable of rendering typefaces with a sophistication equal to that of letterpress hot metal type and cold phototypesetting.

Others at Apple Computer, due to their limited perspective on the utility of the personal computer, could not relate to Steve Jobs’ insistence on the font library; they considered it a distracting personal obsession. In his biography of Jobs, Walter Isaacson quotes Apple investor and partner Mark Markkula: “I kept saying, ‘Fonts?!? Don’t we have more important things to do?’ ”

The original Macintosh font library
The original Macintosh font library

When Steve Jobs launched the Macintosh on January 24, 1984 at the Flint Center in Cupertino, the font library was a critical part of the presentation of “the computer for the rest of us.” It was the first desktop system to offer not only the 9 city-named fonts listed above but also style choices—Plain, Bold, Italic, Bold Italic, Underline, Outline, Shadowed—for each.

While initially appearing somewhat primitive, bitmapped and lacking the finesse of professional typography, Jobs’ on-screen fonts were the beginning of a revolution in type technology. Firstly, fonts became something that everyone with a computer could use, not just professional graphic designers and printing specialists.

Secondly, the Macintosh font library encouraged professionals to push the limits of computer-generated typography and eventually transformed the field of typesetting altogether. Soon desktop fonts surpassed the quality and versatility of all previous type technologies and offered WYSIWYG (What You See Is What You Get) output; i.e. the image displayed on the computer screen is precisely what is printed onto a sheet of paper or other final output media.

Desktop Publishing

Steve Jobs understood the promise of WYSIWYG long before the phrase was widely used in the printing and publishing industries. Nearly one year to the day after unveiling the Macintosh, Jobs was back on stage in Cupertino at the annual Apple stockholders meeting on January 23, 1985 to launch the Apple LaserWriter and demonstrate the first ever desktop publishing system.

Desktop publishing signifies an integrated publishing system whereby pages containing both text and graphics are designed in layout software on a desktop computer and printed in individual or multiple copies on a desktop printer. Building on the accomplishments of the Macintosh, Steve Jobs worked throughout 1984 with partner companies and publishing industry experts to integrate the Apple Macintosh computer with other basic elements of desktop publishing: the Apple LaserWriter, Adobe PostScript and Aldus PageMaker.

The Apple LaserWriter, Apple project manager Bruce Blumberg and laser printer invertor Gary Starkweather
The Apple LaserWriter, Apple project manager Bruce Blumberg and laser printer invertor Gary Starkweather 

Apple LaserWriter: Gary Starkweather invented the core toner imaging technology of the laser printer at Xerox PARC in the early 1970s. Although Xerox never brought a desktop laser printer to market, HP and Canon developed systems independently of each other in the 1970s. The HP LaserJet, based on the Canon LBP-CX printing engine, was the first desktop laser printer and was released in 1984. The Apple LaserWriter, developed by a team led by project manager Bruce Blumberg, had two important differences with the HP device: it was networked (with AppleTalk) and could be shared and contained breakthrough PostScript software that enabled true WYSIWYG capability. The Apple LaserWriter was available for purchase in March 1985 and sold for $6,995.

PostScript Language Reference Manual. Steve Jobs talking with Chuck Geschke (left) and John Warnock of Adobe in January 1985.
PostScript Language Reference Manual. Steve Jobs talking with Chuck Geschke (left) and John Warnock of Adobe in January 1985.

Adobe Postscript: The software at the heart of the Apple LaserWriter was Adobe’s PostScript page description language. John Warnock and Chuck Geschke, who also came from Xerox PARC, founded Adobe Systems in 1982 with PostScript as their flagship product. Warnock and Geschke developed a state-of-the-art device independent print programming language that: 1.) captured all the elements—text, graphics, geometry, etc. —on the page of the desktop layout software during the “Print” function; 2.) interpreted the layout data as vector-based objects within the memory of the printer and; 3.) converted the PostScript objects into raster print data such that the page could to rendered onto a sheet of paper at a resolution of 300 dots per inch. The Adobe founders also signed a licensing agreement with Linotype that made 13 professional typefaces (four styles for each of the Helvetica, Times Roman and Courier families and a Symbol font) “resident” within the PostScript raster image processor (RIP) in the Apple LaserWriter.

Paul Brainerd and an early version of Aldus PageMaker on the Macintosh
Paul Brainerd and an early version of Aldus PageMaker on the Macintosh 

Aldus PageMaker: Paul Brainerd—the man who coined the phrase “desktop publishing”—founded Aldus Corporation in February 1984 in Seattle, WA. With a background in computerized newspaper publishing systems, Brainerd and a group of developers began working on layout software initially for newspapers. After getting some early peeks at the Apple Macintosh, Adobe PostScript and Apple LaserWriter, the Aldus team developed PageMaker as the first application capable of placing columns of text and images onto a virtual page and used a floating tool palette. The first commercially available version of PageMaker was released in July 1985 and sold for $495.

John W. Seybold
John W. Seybold

An important advisor to Steve Jobs throughout the process was John Seybold, a pioneer in computerized publishing systems and industry consultant. According to Paul Brainerd, “There were a couple of people that really were the glue that made all of this come together, and the most important was Jonathan Seybold. He was consulting to both Adobe and Apple. He and I knew each other for a long time going back … he told me some time during ’84, probably in the first quarter, that there was some confidential information that I needed to know. He got clearance from his clients to be able to share it with me.”

In an account published by Adobe in 2004, Jonathan Seybold reviewed the significance of the events that unfolded during the summer of 1984, “Steve wanted to see me urgently. He said they had a deal with Adobe, they were signing a deal with Linotype, they had real fonts. I went to Cupertino and walked into this tiny room, and there stood Jobs and Warnock with a Mac and a LaserWriter. He showed me what they were up to. I turned to Steve and said, ‘You’ve just turned publishing on its head. This is the watershed event.’ ”

Although they are less celebrated, Steve Jobs’ introduction of the Apple Macintosh font library and his pivotal role in launching the desktop publishing revolution in 1984-85 were watershed developments because they made designing and publishing accessible to anyone with a desktop computer and printer. The lasting impact of Jobs’ breakthrough continues to be felt today in the explosion of online and social media publishing by billions of people across the globe. Jobs’ death from cancer at age 56 on October 5, 2011 prematurely ended the life of one of the most important and unique figures of our times.

3-D printing: The next desktop revolution

I suspect there are more than a few readers who remember how printing and publishing changed dramatically in the 1980s as desktop computers and print-ready files displaced phototypesetters and camera-ready artwork. Many of us went from the hazards of darkroom chemistry to that of workstation ergonomics; I remember being unceremoniously lifted from the comfort of my paste-up boards, horizontal camera and film processor and dropped into the world of SyQuest disks, Apple system “bombs” and PostScript (infinite-loop) errors.

Steve Jobs Press Conference January 23 1985
Steve Jobs at the press conference where the first desktop publishing system was announced on January 23, 1985.

Actually, the birth of desktop publishing (a term coined by Paul Brainerd of Aldus Corporation) and its disruptive impact can be traced to a specific date. On January 23, 1985, at a press conference following an annual stockholder’s meeting of Apple Computer, Steve Jobs announced the first desktop publishing system. It consisted of the following component technologies:

  • Personal computer (Apple Macintosh)
  • Page layout software (Aldus PageMaker)
  • Laser printer (Canon/Apple LaserWriter)
  • Page description language (Adobe PostScript)

It is safe to say that few understood the meaning of what happened that day. For the first time, text and graphics were placed on a page simultaneously and imaged on paper as reproduction “copy” or as a final printed sheet. The breakthrough of desktop publishing was that it was possible for just about anyone—with a modest investment—to become a publisher. The full impact of desktop publishing would be realized over the next decade as it transformed several industries and was a significant element in the evolution of the World Wide Web.

Chris Anderson MakersWith the benefit of hindsight, Chris Anderson (author of The Long Tail and former editor of Wired magazine) discusses the long-term implications of the desktop phenomenon in his book Makers: The New Industrial Revolution. “Remember, at that time publishing used to mean manufacturing in every sense of the word, from the railways that brought huge rolls of paper and barrels of ink to the printing plant … Taking publishing out of the factories liberated it. But the real impact of this was not in paper, but in the idea of ‘publishing’ online. Once people were given the power of the press, they wanted to do more than print out newsletters. So, when the web arrived, ‘publishing’ became ‘posting’ and they could reach the world.”

Today Anderson believes that we are living through a similar paradigm shift. But this time it is in the world of physical objects and the making of things. Today’s Maker Movement—the design and manufacture of things by individuals instead of industrial corporations—is with personal computers, CAD software and desktop 3-D printers and other equipment like laser cutters and CNC machines.

Form 1 desktop 3-D printer
Desktop 3-D printers take geometric data from CAD software and fabricate objects out of liquid plastic or resin

Distinct from the desktop printers that produce 2-D black and white or full color images on sheets of paper, a 3-D printer uses electronic geometries and turns them into objects that you can pick up and hold in your hand. Desktop 3-D printers usually extrude molten plastic in layers of liquid or powder resin. They can typically put down plastic material in thin layers (.33 of a millimeter) in processes like fusion deposition modeling (FDM), stereo lithography (SLA) or selective laser sintering (SLS).

3-D printers are an “additive” manufacturing technology; they build up objects from nothing, layer by layer. This is distinct from older industrial techniques—like “subtractive” routers and mills—in which spinning raw material is cut or ground away to reveal the object. Although they are newer and undergoing rapid development, additive 3-D printers have the advantage of producing little or no waste in the production process.

3D Print Sales Chart
Market size by 3-D printing sector application in US$ million

According to a recent report by IDTechEx, large-scale 3-D printing surpassed revenues of $1 billion in 2012 and growth is expected to quadruple by 2025. Industries that are heavy users of 3-D printing technologies are medical and dental, automotive and aerospace. The promise of the 3-D print is that it opens up inexpensive variability and complexity to the mass manufacturing process. For example, 3-D print used in the manufacture of prosthetics and orthopedic implants makes possible mass customization based on patient CT or MRI scan data.

Some believe—including Chris Anderson—that the digital Do-It-Yourself (DIY) and Maker Movement are generating a much bigger market than that of the large-scale commercial applications. The aggregate value of the design and manufacture of entirely custom products in medium to small (or even single) quantities is potentially greater than the manufacture of mass consumer products where each item is identical.

This is a business concept that everyone in the printing industry is very familiar with. We have been dealing with the economics of the digital print for two decades and understand very well that the cost per unit of a digital print product (custom) versus conventional offset printing (mass production). The cost per unit in digital print is “flat,” i.e. it do not rise or fall based upon a decrease or increase in quantity or a change in complexity, whereas the cost of the setup (make-ready) of a traditional offset print project is amortized across the entire print run.

chrischarts.indd
The relationship between the cost per unit and the quantity of mass manufacturing (injection molding) versus digital fabrication (3-D printing).

Anderson explains it this way, “Digital fabrication inverts the economics of traditional manufacturing. In mass production, most of the costs are in up-front tooling, and the more complicated the product is and the more changes you make, the more it costs. But with digital fabrication, it’s the reverse: the things that are expensive in traditional manufacturing become free.”

We can rightfully question Chris Anderson’s assertion that digital desktop fabrication heralds the beginning of new industrial revolution on the magnitude of that which occurred in the nineteenth century. However, there is no doubting his commitment. Anderson recently left his position after more than ten years as editor of Wired magazine to become full-time CEO of the firm he founded called 3D Robotics that manufactures unmanned aerial vehicles (UAVs).

As we think about the meaning of 3-D printing technology today, it is important to reflect back upon the desktop revolution of the 1980s. We should recall that many in the publishing industry viewed the nascent desktop system—inspired by Steve Jobs of Apple, Paul Brainerd of Aldus and Chuck Geschke and John Warnock of Adobe—as not measuring up to the professional requirements of the day. Many who initially dismissed desktop publishing as a fad and resisted the transition away from mechanical graphic arts technologies would later live to regret that perception.

The promise of 3-D printing is significant. Perhaps Chris Anderson will not be alone in the migration from the printing and publishing industries to that of digital fabrication, DIY manufacturing and the Maker Movement.